Data-parallel agent-based microscopic road network simulation using graphics processing units

نویسندگان

  • Peter Heywood
  • Steve C. Maddock
  • Jordi Casas
  • David Garcia
  • Mark Brackstone
  • Paul Richmond
چکیده

Road network microsimulation is computationally expensive, and existing state of the art commercial tools use task parallelism and coarse-grained data-parallelism for multi-core processors to achieve improved levels of performance. An alternative is to use Graphics Processing Units (GPUs) and fine-grained data parallelism. This paper describes a GPU accelerated agent based microsimulation model of a road network transport system. The performance for a procedurally generated grid network is evaluated against that of an equivalent multi-core CPU simulation. In order to utilise GPU architectures effectively the paper describes an approach for graph traversal of neighbouring information which is vital to providing high levels of computational performance. The graph traversal approach has been integrated within a GPU agent based simulation framework as a generalised message traversal technique for graph-based communication. Speed-ups of up to 43 × are demonstrated with increased performance scaling behaviour. Simulation of over half a million vehicles and nearly two million detectors at a rate of 25 × faster than real-time is obtained on a single GPU. © 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ )

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Framework for Megascale Agent Based Model Simulations on Graphics Processing Units

Agent-based modeling is a technique for modeling dynamic systems from the bottom up. Individual elements of the system are represented computationally as agents. The system-level behaviors emerge from the micro-level interactions of the agents. Contemporary state-of-the-art agent-based modeling toolkits are essentially discrete-event simulators designed to execute serially on the Central Proces...

متن کامل

Improvement and parallelization of Snort network intrusion detection mechanism using graphics processing unit

Nowadays, Network Intrusion Detection Systems (NIDS) are widely used to provide full security on computer networks. IDS are categorized into two primary types, including signature-based systems and anomaly-based systems. The former is more commonly used than the latter due to its lower error rate. The core of a signature-based IDS is the pattern matching. This process is inherently a computatio...

متن کامل

GP-GPU and Multi-Core Architectures for Computing Clustering Coefficients of Irregular Graphs

Network science makes heavy use of simulation models and calculations based upon graph-oriented data structures that are intrinsically highly irregular in nature. The key to efficient use of data-parallel and multi-core parallelism on graphical processing units (GPUs) and CPUs is often to optimise the data layout and to exploit distributed memory locality with processing elements. We describe w...

متن کامل

Numerical Simulation of a Lead-Acid Battery Discharge Process using a Developed Framework on Graphic Processing Units

In the present work, a framework is developed for implementation of finite difference schemes on Graphic Processing Units (GPU). The framework is developed using the CUDA language and C++ template meta-programming techniques. The framework is also applicable for other numerical methods which can be represented similar to finite difference schemes such as finite volume methods on structured grid...

متن کامل

GPU Delegation: Toward a Generic Approach for Developping MABS using GPU Programming

Using Multi-Agent Based Simulation (MABS), computing resources requirements often limit the extent to which a model could be experimented. As the number of agents and the size of the environment are constantly growing in these simulations, using General-Purpose Computing on Graphics Units (GPGPU) appears to be very promising as it allows to use the massively parallel architecture of the GPU (Gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Simulation Modelling Practice and Theory

دوره 83  شماره 

صفحات  -

تاریخ انتشار 2018